Exercise 2.3.9

Redo Exercise 2.3.8 if $\alpha<0$. [Be especially careful if $-\alpha / k=(n \pi / L)^{2}$.]

Solution

The initial boundary value problem considered in Exercise 2.3.8 was

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha u, \quad 0<x<L, t>0 \\
& u(0, t)=0 \\
& u(L, t)=0 \\
& u(x, 0)=f(x) .
\end{aligned}
$$

Here it is assumed that $\alpha<0$.

Part (a)

The equilibrium temperature distributions have no time dependence: $u_{E}=u_{E}(x)$. As a result, they satisfy

$$
0=k \frac{d^{2} u_{E}}{d x^{2}}-\alpha u_{E} .
$$

Divide both sides by k.

$$
\frac{d^{2} u_{E}}{d x^{2}}-\frac{\alpha}{k} u_{E}=0
$$

The general solution is written in terms of sine and cosine.

$$
u_{E}(x)=C_{1} \cos \sqrt{-\frac{\alpha}{k}} x+C_{2} \sin \sqrt{-\frac{\alpha}{k}} x
$$

Since the boundary conditions for u apply for all time, u_{E} satisfies the same conditions, $u_{E}(0)=0$ and $u_{E}(L)=0$. Apply them both to determine C_{1} and C_{2}.

$$
\begin{aligned}
u_{E}(0) & =C_{1}=0 \\
u_{E}(L) & =C_{1} \cos \sqrt{-\frac{\alpha}{k}} L+C_{2} \sin \sqrt{-\frac{\alpha}{k}} L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \sqrt{-\frac{\alpha}{k}} L=0$. If it so happens that the argument of sine is a positive multiple of π,

$$
\sqrt{-\frac{\alpha}{k}} L=n \pi, \quad n=1,2, \ldots
$$

then the equilibrium temperature distribution is

$$
u_{E}(x)=C_{2} \sin \frac{n \pi x}{L}
$$

Otherwise, the equilibrium temperature distribution is

$$
u_{E}(x)=0 .
$$

Part (b)

The PDE and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha u \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]-\alpha[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{lllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & \rightarrow & X(0)=0 \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & \rightarrow & X(L)=0
\end{array}
$$

Separate variables in the PDE now.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}-\alpha X(x) T(t)
$$

Divide both sides by $k X(x) T(t)$.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}=\lambda
$$

As a result of using the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{rl}
\frac{1}{k T} \frac{d T}{d t} & =\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k} & =\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\mu^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\left(\frac{\alpha}{k}+\mu^{2}\right) X
$$

which only has a nontrivial solution if the quantity in parentheses is negative.

$$
\frac{d^{2} X}{d x^{2}}=-\left(-\frac{\alpha}{k}-\mu^{2}\right) X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{3} \cos \sqrt{-\frac{\alpha}{k}-\mu^{2}} x+C_{4} \sin \sqrt{-\frac{\alpha}{k}-\mu^{2} x}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{3}=0 \\
& X(L)=C_{3} \cos \sqrt{-\frac{\alpha}{k}-\mu^{2}} L+C_{4} \sin \sqrt{-\frac{\alpha}{k}-\mu^{2}} L=0
\end{aligned}
$$

The second equation reduces to $C_{4} \sin \sqrt{-\frac{\alpha}{k}-\mu^{2}} L=0$. To avoid getting the trivial solution, we insist that $C_{4} \neq 0$. Then

$$
\begin{aligned}
\sin \sqrt{-\frac{\alpha}{k}-\mu^{2}} L & =0 \\
\sqrt{-\frac{\alpha}{k}-\mu^{2}} L & =n \pi, \quad n=1,2, \ldots \\
\sqrt{-\frac{\alpha}{k}-\mu^{2}} & =\frac{n \pi}{L} \\
-\frac{\alpha}{k}-\mu^{2} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
\mu^{2} & =-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}} .
\end{aligned}
$$

The number of positive eigenvalues is constrained by the fact that $\mu^{2}>0$.

$$
\begin{gathered}
-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}>0 \\
\frac{n^{2} \pi^{2}}{L^{2}}<-\frac{\alpha}{k} \\
n^{2}<-\frac{\alpha}{k} \frac{L^{2}}{\pi^{2}} \\
0<n<\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}
\end{gathered}
$$

Consequently, the positive eigenvalues are $\lambda=-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}$ for $0<n<\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{3} \cos \sqrt{-\frac{\alpha}{k}-\mu^{2}} x+C_{4} \sin \sqrt{-\frac{\alpha}{k}-\mu^{2} x} \\
& =C_{4} \sin \sqrt{-\frac{\alpha}{k}-\mu^{2} x} \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
\end{aligned}
$$

Now solve the ODE for T with this formula for λ.

$$
\frac{d T}{d t}=k\left(-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}\right) T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{5} \exp \left[k\left(-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \quad \rightarrow \quad T_{n}(t)=\exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right]
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{\alpha}{k} X,
$$

which is the same as the one for $u_{E}(x)$. Zero is an eigenvalue if it so happens that

$$
\sqrt{-\frac{\alpha}{k}} L=n \pi \quad \text { or } \quad n=\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}, \quad n=1,2, \ldots
$$

The eigenfunction associated with it is $X_{0}(x)=\sin \frac{n \pi x}{L}$. Now solve the ODE for T with $\lambda=0$.

$$
\frac{d T}{d t}=0 \quad \rightarrow \quad T=\text { constant }
$$

Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$. The ODE for X becomes

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}=-\gamma^{2} \quad \rightarrow \quad \frac{d^{2} X}{d x^{2}}=-\left(-\frac{\alpha}{k}+\gamma^{2}\right) X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{6} \cos \sqrt{-\frac{\alpha}{k}+\gamma^{2}} x+C_{7} \sin \sqrt{-\frac{\alpha}{k}+\gamma^{2} x}
$$

Apply the boundary conditions to determine C_{6} and C_{7}.

$$
\begin{aligned}
& X(0)=C_{6}=0 \\
& X(L)=C_{6} \cos \sqrt{-\frac{\alpha}{k}+\gamma^{2}} L+C_{7} \sin \sqrt{-\frac{\alpha}{k}+\gamma^{2}} L=0
\end{aligned}
$$

The second equation reduces to $C_{7} \sin \sqrt{-\frac{\alpha}{k}+\gamma^{2}} L=0$. To avoid getting the trivial solution, we insist that $C_{7} \neq 0$. Then

$$
\begin{aligned}
\sin \sqrt{-\frac{\alpha}{k}+\gamma^{2}} L & =0 \\
\sqrt{-\frac{\alpha}{k}+\gamma^{2}} L & =n \pi, \quad n=1,2, \ldots \\
\sqrt{-\frac{\alpha}{k}+\gamma^{2}} & =\frac{n \pi}{L} \\
-\frac{\alpha}{k}+\gamma^{2} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
\gamma^{2} & =\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}
\end{aligned}
$$

The number of negative eigenvalues is constrained by the fact that $\gamma^{2}>0$.

$$
\begin{gathered}
\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}>0 \\
\frac{n^{2} \pi^{2}}{L^{2}}>-\frac{\alpha}{k} \\
n^{2}>-\frac{\alpha}{k} \frac{L^{2}}{\pi^{2}} \\
\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<n<\infty
\end{gathered}
$$

Consequently, the negative eigenvalues are $\lambda=-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}$ for $\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<n<\infty$. The eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{6} \cos \sqrt{-\frac{\alpha}{k}+\gamma^{2}} x+C_{7} \sin \sqrt{-\frac{\alpha}{k}+\gamma^{2} x} \\
& =C_{7} \sin \sqrt{-\frac{\alpha}{k}+\gamma^{2} x} \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
\end{aligned}
$$

Now solve the ODE for T with this formula for λ.

$$
\frac{d T}{d t}=k\left(-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}\right) T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{8} \exp \left[k\left(-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \quad \rightarrow \quad T_{n}(t)=\exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right]
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over the eigenvalues. Depending what $\sqrt{-\alpha / k}(L / \pi)$ is, the eigenvalues (and hence the solution) will be different.

Therefore,

$$
\begin{aligned}
& u(x, t)= \begin{cases}\sum_{n=1}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k} \frac{L}{\pi}}<1 \\
B_{0} \sin \frac{\pi x}{L}+\sum_{n=2}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k} \frac{L}{\pi}}=1 \\
\sum_{0<n<\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L}+B_{0} \sin \sqrt{-\frac{\alpha}{k} x} & \\
+\sum_{\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<n<\infty}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi} \in \mathbb{Z}^{+}}\end{cases} \\
& \sum_{0<n<\sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} \\
& +\sum_{\sqrt{-\frac{\alpha}{k} \frac{L}{\pi}<n<\infty}}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} \quad \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi} \notin \mathbb{Z}^{+}
\end{aligned}
$$

The sums in blue are linear combinations over the negative eigenvalues. The exponential functions in them tend to zero as $t \rightarrow \infty$. On the other hand, the sums in red are linear combinations over the positive eigenvalues. The exponential functions in them tend to ∞ as $t \rightarrow \infty$. As a result,

$$
\lim _{t \rightarrow \infty} u(x, t)= \begin{cases}0 & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<1 \\ B_{0} \sin \frac{\pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}=1 . \\ \infty & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}>1\end{cases}
$$

The solution can be written compactly as

$$
u(x, t)=\left\{\begin{array}{ll}
\sum_{n=1}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<1 \\
B_{0} \sin \frac{\pi x}{L}+\sum_{n=2}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}=1 \\
B_{0} \sin \frac{p \pi x}{L}+\sum_{\substack{n=1 \\
n \neq p}}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}=p \in \mathbb{Z}^{+}} \begin{array}{ll}
\sum_{n=1}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} & \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi} \notin \mathbb{Z}^{+}
\end{array} . . .
\end{array} .\right.
$$

The final task is to use the initial condition $u(x, 0)=f(x)$ to determine the coefficients.

Each of these cases is a Fourier sine series expansion of $f(x)$. The coefficients are therefore

$$
\begin{aligned}
& B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2, \ldots \\
& \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}<1 \\
& B_{0}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{\pi x}{L} d x, B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=2,3, \ldots \quad \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}=1 \\
& B_{0}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{p \pi x}{L} d x, B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \begin{array}{l}
n=1,2, \ldots \\
n \neq p
\end{array} \quad \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}=p \in \mathbb{Z}^{+} \\
& B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2, \ldots \\
& \text { if } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi}>1 \text { and } \sqrt{-\frac{\alpha}{k}} \frac{L}{\pi} \notin \mathbb{Z}^{+}
\end{aligned}
$$

