Haberman Applied PDEs 5e: Section 2.3 - Exercise 2.3.9 Page 1 of 8

Exercise 2.3.9

Redo Exercise 2.3.8 if a < 0. [Be especially careful if —a/k = (nw/L)%.]

Solution
The initial boundary value problem considered in Exercise 2.3.8 was

2
g:::kg;;—au, 0<I<L7t>0
u(0,t) =
u(L,t) =0

u(z,0) = f(x).

Here it is assumed that o < 0.
Part (a)

The equilibrium temperature distributions have no time dependence: up = ug(x). As a result,
they satisfy

d2
0=% d;LQE — QUE
Divide both sides by k.
dPup  «
A2 EFT 0

The general solution is written in terms of sine and cosine.

up(z) = Ch cos“—%x%— C’Qsin,/—%x

Since the boundary conditions for u apply for all time, ug satisfies the same conditions,
up(0) =0 and ug(L) = 0. Apply them both to determine C; and Cs.

up(0)=C1 =0
ug(L) = C}cosy/ —%L + Cy sinwl—%L =0
The second equation reduces to Casin \/—7 L = 0. If it so happens that the argument of sine is a

positive multiple of 7,

—EL:mr, n=12 ...,
then the equilibrium temperature distribution is
nTT
'LLE(I'> = 02 sin T

Otherwise, the equilibrium temperature distribution is

up(xr) =0.
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Part (b)

The PDE and its associated boundary conditions are linear and homogeneous, so the method of
separation of variables can be applied. Assume a product solution of the form u(x,t) = X (z)T'(t)
and substitute it into the PDE

ou 0%u 0 0?
5 k@ —au = a[X(x)T(t)] = k@[X(l’)T(t)] — af[X(2)T'(t)]
and the boundary conditions.
u(0,t) =0 — X(0)T(t)=0 — X(0)=0
u(L,t) =0 — X(L)T(t)=0 — X(L)=0
Separate variables in the PDE now.
dT d’X

Divide both sides by kX (z)T'(t).
1 dT 1d°X o

KT dt, X d2® &
S~—— S——
function of ¢ function of x
The only way a function of ¢ can be equal to a function of x is if both are equal to a constant .
1dTl 1d*X  «
kT dt X da?  k
As a result of using the method of separation of variables, the PDE has reduced to two
ODEs—one in = and one in t.

=A

1 dT

a0
18X o,
X dx? ko

Values of A that result in nontrivial solutions for X and 7" are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that A is positive: A = 2.
The ODE for X becomes )
d° X «
()

dz? k
which only has a nontrivial solution if the quantity in parentheses is negative.

= (i)

The general solution is written in terms of sine and cosine.

X (z) = Cscos mx + Cysin mw

Apply the boundary conditions to determine C3 and Cy.
X(0)=C3=0

X(L) _C3COSmL+C4SinmL—O
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The second equation reduces to Cysin/—7 — w?L = 0. To avoid getting the trivial solution, we
insist that Cy # 0. Then

—%—,uQL:mr, n=1,2,
[« nw
_E_'u2_f
o ,  nm?
T
, o nPr?
=% 12

0<n< -2
n _ab
kx

Consequently, the positive eigenvalues are A = —¢ — % for 0 <n < —%%, and the
eigenfunctions associated with them are

X(I):C3cosmx+c451nmx
_C4Sinmx — Xn(.’IJ)ZSiDLZx.

Now solve the ODE for T" with this formula for \.

drT a nr?
dt:k<_k_ L2 )T

The general solution is written in terms of the exponential function.

T(t) = Cs exp [k: <—Z - 7?;2) t} S Ta(t) = exp [—k <z + 7i7272> t]

Suppose secondly that A is zero: A = 0. The ODE for X becomes

X o
drz2 k7

which is the same as the one for ug(x). Zero is an eigenvalue if it so happens that

/ L
—%L:mr or n= —%;, n=12....
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The eigenfunction associated with it is Xo(z) = sin “7*. Now solve the ODE for T" with A = 0.

dr
— =0 — T = constant
dt
Suppose thirdly that A is negative: A = —y?. The ODE for X becomes
1 d?’X  « 5 d’X a
- —=— - —=—(—-= X
Xa? k) o= (-5+7)

The general solution is written in terms of sine and cosine.

X(z) = Cg cos \/Wx + C7sin mx

Apply the boundary conditions to determine Cgs and C'.
X(0)=Cs=0

The second equation reduces to C7sin/—% +v?L = 0. To avoid getting the trivial solution, we

insist that C7 # 0. Then
siny /— > + 2L =0
k
1/—%+72L:n7r, n=12...

+ 2_E
T
n

2n

_“
k

2
— 2

5 a nin?

The number of negative eigenvalues is constrained by the fact that v > 0.

(07 7’L27T2

e 7

n27r2 [0

7 7Tk
aL?

2
n?>-——=
k w2

al
——— < nNn<X
\/ kn

. . 2.2
Consequently, the negative eigenvalues are A = —% — #;5— for —%% <n < oo. The
eigenfunctions associated with them are

X(l‘):CGCOSW/—%—F’)/%U—I—C%SHI”—%—i—’yQ%
= C7sin~/—% +v2x = Xp(x) :sin%.
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Now solve the ODE for T' with this formula for \.

drT a nr?
il =2\
dt k( k L2 )

The general solution is written in terms of the exponential function.

T(t) = Cg exp [k <—z - ’if) t} S Tu(t) = exp [—k <z + Tij) t}

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X,,(x)7T,(t) over the eigenvalues. Depending what /—a/k(L/7) is, the
eigenvalues (and hence the solution) will be different.
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Therefore,
(> 2,2
a  nom . nnT . ol
ZBnexp {_k<k+ Iz )t]sm 7 1f1/_E;<1
n=1
0 2,2
. T a  neT . nmx . al
BQSIDL+;BneXP |:_k <k+[/2> t:| SIHT lf —E;:1
= a  nir? . . Q
Z Bhexp |-k | — + 5~ | t|sin + Bysiny [ ——x
k L k
U([E,t) = 0<n< %#

L
> a nir? . onmx . al al I
+ a; By, exp [—k <k+L2> t] s —— lf\/:W>1and \/;WEZ

e 2,2
+ Z B, exp [—k (Z—FnLZ >t] sinn—zm if\/§£>1and —%£¢Z+

—_alL
\ k_ﬁ<n<oo

The sums in blue are linear combinations over the negative eigenvalues. The exponential functions in them tend to zero as t — co. On
the other hand, the sums in red are linear combinations over the positive eigenvalues. The exponential functions in them tend to co as
t — 0o. As a result,

@
0 fi/———<1
' k
i _ mmz e ool
tllglou(m,t)— Bysin 7Fif k:7r_1'
al
if {/———>1
\oo i g
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The solution can be written compactly as

iB i a+n27r2 ol s nwx £ aL<1
exX — - m — 1 -
n OXP rore )T i

> 2,2 I
Bosin7f+ZBnexp[—k(i+”L§Hsin”f if -7 =1

n=2
u(z,t) =
a n3r? . nmxr . al al n
BOSIHT+ZB exp[ k(k+ 72 )t} sin —— 1f1/—k7r>1and\/;ﬂ_p€Z
n#p

> a  nir? . nTx . oL al n

The final task is to use the initial condition u(z,0) = f(x) to determine the coefficients.

/ L
Zanmw it —22 <1
kw

o
. T . nmx .. | «alL
BOSIDL+nE:2BnSIDL if _E;:1

u(z,0) = f(z) =
PTE nmx /| alL /[ alL
. . _ +
BOSIDL+;BnSIDL if —E;>1and —E;_peZ
n#p
o
nwx a L al
ZB"SIHT if /- T > 1 and ——;gﬁZ*
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Each of these cases is a Fourier sine series expansion of f(x). The coefficients are therefore

/ f(z sin@dw n=12 ...

:%
ﬁ ﬁ
> Q >~ Q
Rl 3 |~
[l A
— —

2 [f 2 [f
_L/ f(a:)sin%xdx, Bn:L/ f(x)sinnLﬂdx, n=2,3,... if
0 0

2 L P 2 L nmTx n=12...
=z in "% dz, B, = = in L g if
L/o f(x)sin 7 4%, Bn L/o f(x)sin 7 do, n%p i

9 L
:L/o f(x)sinn—zfgda:, n=12 ... if

> 1and =pecZ

1and,/——£¢Z+

|

NN
3|
ﬁ
> Q
3|

=
mh
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